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ABSTRACT

The problem of control of the ultra-long waves in numerical prediction is considered. Sections 2—4 contain a

discussion of the one-level forecasts.

It is shown that the vertical variation of the horizontal wind and the static

stability are the main factors in determining the value of divergence at 500 mb. An independent estimate of the
size of the term governing the ultra-long waves in the atmosphere agrees well with the one determined by

Cressman on an empirical basis.

Section 5 points out that any two-parameter model has to contain an effect similar to the one contained in the

one-parameter model controlling the ultra-long waves.
a way that the ultra-long waves are controlled.

A modification of a two-parameter model is made in such

Section 6 describes a perturbation analysis of the model developed in Section 5 in order to investigate the effect

of the modification also on the shorter waves.

It is found that a certain stabilization of the shorter waves

is produced. Baroclinic instability and growth rate are investigated.
Sections 7 and 8 contain a justification of certain approximations used in the earlier sections regarding the
vertical variation of static stability and the profile of vertical velocity.

1. INTRODUCTION

The Joint Numerical Weather Prediction Unit has re-
cently improved the 500-mb. barotropic forecasts by
paying special attention to the behavior of the very long
atmospheric waves. The non-divergent barotropic fore-
casts were first empirically corrected by Wolff [18], who
used the observed fact that the very long atmospheric
waves do not change either position or ampltitude to any
great extent from day to day. He therefore forced the
waves with wave-number one, two, and three to be sta-
tionary throughout the forecast period. Shortly after,
Cressman [6] used a special case of Phillips’ [13] two-
layer model to show that a model atmosphere consisting
of two homogeneous layers, where the motion in the lower
fluid is parallel to the contour of the interface, and where
the motion in the upper fluid is negligible, would decrease
the retrogression of the very long atmospheric waves to a
considerable extent. The forecast equation used by Cress-
man is the same as the one used by Bolin [2] in his so-
called tropopause model. Both of these authors had dif-
ficulties in the determination of the proper value for
certain constants appearing in the prognostic equation,
mainly because a model atmosphere consisting of two
homogeneous layers is rather difficult to “translate” to the
real atmosphere. Cressman decided therefore to deter-
mine the value of the coeflicient by computing a number
of forecasts on the same data with different values of the
coefficient and then choosing the coefficient that gave the
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best forecast. This procedure may not lead to the proper
value of the coefficient, because a minimization of forecast
height errors with respect to the coefficient might tend to
compensate for correlated, but physically unrelated er-
rors, as was also mentioned by Cressman.

In view of the situation mentioned above it seems to be
in order to try to formulate the barotropic, divergent
model in such a way that the value of the constants can
more easily be related to the real atmosphere. Sections
2 through 4 of this paper are devoted to this purpose.

An analysis of baroclinic instability and especially of
the phase-speed of waves in a baroclinic atmosphere, as
for instance made by Eliassen [9], shows that the phase-
speed for large values of the wavelength approaches the
Rossby speed for a non-divergent atmosphere. For large
values of the wavelength one actually obtains two soly-
tions for the phase-speed. One of them is not likely to
be observed in the atmosphere because it corresponds toa
situation where the temperature wave is out of phase with
the pressure, corresponding to warm troughs and cold
ridges. The other solution is the one approaching the
Rossby speed.

This result shows that one will find about the same dif-
ficulties as in the non-divergent barotropic model with
respect to the ultra-long waves, when one integrates a
baroclinic model of the usual type over an almost hemi-
spheric region. It is therefore a necessity to correct the
baroclinic forecast equations in such a way that the
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retrogression of the ultra-long waves is reduced to a con-
siderable extent. Section 5 describes a simple two-
parameter model where this effect is included.

Recently Burger [3] pointed out that the vorticity
equation loses its prognostic value when the wavelength is
of the same order of magnitude as the radius of the earth.
As long as we base our forecasts on the vorticity equation
we can therefore probably not do anything better than
express the quasi-stationary character of the ultra-long
waves. The two models presented here do therefore not
claim to have any skill in the regime of the ultra-long
waves. The problem which has been attacked is to in-
corporate effects in barotropic and baroclinic models
which control the long waves and at the same time to in-
vestigate the changes which may be caused by such effects
on the shorter waves.

2. DERIVATION OF THE PROGNOSTIC EQUATION
IN THE BAROTROPIC CASE

In the derivation we shall consider the vorticity equa-
tion in the form

%+V-Vn=fog% 2.1)
where V is the horizontal wind vector, { is the vertical
component of the relative vorticity, =¢+f, f is the Cori-
olis parameter, and o=dp/d¢ the vertical velocity in
a coordinate system with pressure as the vertical co-
ordinate.

This form of the vorticity equation, where the value of
the Coriolis parameter in the divergence term is a stand-
ard value, /=f,, is consistent with certain general integral
constraints, as shown by the author [17], when the hori-
zontal wind in the vorticity advection term is non-
divergent. The derivation of the barotropic vorticity
equation is usually based upon the equivalent-barotropic
atmosphere (Charney [5]), where the horizontal wind
in the complete atmosphere is assumed to vary vertically
In strength, but not in direction. It is then shown that
the simple barotropic vorticity equation can be applied
to the vertical mean flow in the atmosphere provided the
effect of surface pressure changes is neglected. The
assumption

V=A(p)V* (2.2)
which defines the equivalent-barotropic atmosphere and
where V* for instance may be taken as the 500-mb. flow,
will in general apply with good accuracy in a layer
around the 500-mb. level, while the accuracy becomes
smaller the farther we are from the 500-mb. level. We
shall in the following make use of (2.2) only in a thin
layer around the 500-mb. level. Equation (2.2) expresses
then, according to the geostrophic thermal wind relation,
that the thermal wind is parallel to the wind itself, or in
other words that the isotherms at 500 mb. are parallel to
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the contour lines. The last requirement is probably ful-
filled to the greatest extent in the mid-troposphere, while
temperature advection by the horizontal wind is greater
both higher up and lower down in the troposphere, ac-
cording to observations.

The equivalent-barotropic atmosphere is usually treated
without any reference to the thermodynamics of the
atmosphere. If, however, the relation (2.2) is approxi-
mately satisfied at least around the 500-mb. level it must
mean ‘that the local temperature changes to the largest
extent are compensated by vertical velocities, and that the
adiabatic equation therefore takes the form

0 (09 _n . 0olne
a—t(a—p>+aw—0, o=—a o

2.3

at the 500-mb. level. In (2.3) ¢=gz is the geopotential,
a the specific volume, and 6 the potentialitemperature.
The expression (2.2) applies actually to'the distribution
of the horizontal wind. If the horizontal wind is assumed
quasi-geostrophic, we obtain from (2.2):

0 '(9__¢ _dA o¢*
ot \op

=dp o
The vertical velocity can then be obtained from (2.3)
in the form:

. (2.4)

_dA/dp o¢*

T o (2.5)

We shall further in the thermodynamic equation (2.5)
replace the geopotential ¢* by a stream function ¢*
satisfying the relation

¢*
Fem i 2.6
Vi=r (2.6)

The implication of this assumption in the thermody-
namic equation, and only here, has been discussed by
Phillips [15]. Introducing (2.6) in (2.5) we obtain:
__dAjdp . oy*

. 5 @.n

In order to obtain the prognostic equation from (2.1)

it is now necessary to evaluate dw/0p from (2.7). Let us
assume for simplicity that dA4/dp is a constant. The main

problem is then in which way the vertical stability o varies
with pressure. It will be shown (section 7) that a varia-
tion of the vertical stability expressed by the formula

-2

o—o* (%) , P=500 mb. 2.8)
describes the vertical variation of temperature in a mean
atmosphere with good accuracy. In (2.8) o* is the static
stability at 500 mb. The accuracy is especially good
around 500 mb., because the vertical stability at 500 mb.
is used to fit the distribution (2.8) to the atmosphere.

From (2.7) and (2.8) we obtain then, provided 4 (p)
varies linearly with pressure:
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—) = 2.9
07/ 500 2.9)
which, inserted in (2.1), leads to the prognostic equation:
2 (V) + I =0 (2.10)
where
_2¢ (_dAN,
“op \"ip) e

3. DISCUSSION OF THE PROGNOSTIC EQUATION

The Helmholz term appearing in (2.10) is in this for-
mulation due to two factors, the increase of the horizontal
wind with height and the decrease of temperature with
height in the atmosphere. Both of these factors are well
known from observations, and it is therefore somewhat
easier to determine the proper value of ¢ to be used here
than in Bolin’s and Cressman’s prognostic equations. In
order to determine ¢ we need a value for o* and for
(—dA/dp).

The value for ¢* may be determined from the expression

olné_ RT

op  op? (Ya—7) (3.1)

g—=—a —Y
where & is the gas constant, vy, the dry adiabatic lapse rate,
and y the local lapse rate.

It has been the general experience among people work-
ing with models in numerical prediction that the standard
atmosphere is too unstable. Using y=0.5° C. per 100 m.,

which corresponds to about 80 percent of y in the standard
atmosphere, we obtain :

=4.2 MTS units. (3.2)

We have already assumed that A (p) varies linearly
with pressure in the derivation of (2.9). We may now
obtain 44 /dp by noting that 4 (p*)=1 according to (2.2)
and further assume that 4 (2FP)=0.2, which means that
the surface wind is about 20 percent of the 500-mb. wind,
an assumption used, for instance, in the incorporation of

the mountain effect in the barotropic model. This gives:
—dA/dp=0.8/P=16x107? (3.3)

and
q==1.5X 1071 (3. 4)

The prognostic equation (2.10) may now be compared
with Cressman’s prognostic equation reproduced here
without the term accounting for the mountain effect :

2 (vyr—u ;: w*)+ JW* %) =0 (3.5)

~In this equation the symbols have the same meaning as
before. y¢* is a representative mean value of the stream
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function obtained through the solution of the balance
equation, while g is the coefficient, which actually is equal

tol / g<1 —%) where 4 is the height of the interface, z the

height of the 500-mb. surface, and p” and p the densities of
the upper and lower fluid. We are now in the position to
evaluate the value of u, which would correspond to the
estimate of ¢ given in (8.4), if we linearize the coeflicient
in (3.5). We obtain then:

gz
B f02 Q‘- (3'6)

This independent estimate of u is about equal to the
highest value of p used by Cressman in his empirical
determination of the coefficient. Cressman varied p from
0 to 8. It will be seen that u is inversely proportional to
o*. A value of o* higher than the one used here cor-
responding to y=0.5°C./100 m. is probably not possible
as a mean value for the atmosphere If we therefore
accept this value of o¥, it is found that values of u less
than 8 can be obtained only with —dA/dp smaller than
the value used here. It is interesting to note that a value
of p=4, which is the value used at the moment in the
operatlonal forecasting, would correspond to —dA4/dp
=0.4/P. This would mean that the surface wind should
be about 60 percent of the 500-mb. wind, which sounds
unreasonable. On the basis of this discussion one is
therefore tempted to conclude that a value of u somewhat
greater than 4 ought to be used.

4. A SIMPLE WAVE ANALYSIS

It is of interest to make a simple wave analysis of the
prognostic equation (2.10) in order to obtain a first idea
of the influence which different values of ¢ will have on
the motion of long and short waves in the atmosphere.

Consider a stream function

Yy, t)=—Uy+ At (4.1)

where the superscript * now has been dropped and where
U=constant is the zonal component of the wind. This
stream function will satisfy (2.10) provided the phase
speed ¢ satisfies the relation

U—B/E’__ cvp
14/l 1+g/k?

In the derivation of (4.2)8=df/dy has been considered as
constant and is evaluated at 45° N. k=2x/L, where L is
the wavelength. If N is the number of waves around the
hemisphere, i.e., 20R cos ¢=N - L, we may also write
(4.2) in the form

c== (4.2)

U— 29Rcos3 o/N*?

1+ ¢R? cos o/ N? (4.3)

c==
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Fi¢URE 1.—Phase velocity as a function of number of waves
around the hemisphere. The solid line corresponds to ¢q=0, the
dashed line to g=(3/4)10™ and the dotted line to ¢=(3/2)107%,
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The values of ¢ shown in figure 1 in m. sec.™ are com-
puted for U=20 m. sec.”’, ¢=45° N., and for ¢=0,
(8/4) X10-2, and (3/2) X10*%, which would correspond
to approximately u=0, 4, and 8. It is seen that
g=(8/2) X102, the value estimated in this study, reduces
the retrogression further than the operational value. For
wave number 1 the phase-velocity changes from about
—19 m. sec.”* to about —11 m. sec.”, while on the other
hand ¢ is changed from 12 m. sec.* to 10 m. sec.”* for
N =8, corresponding to a wavelength of about 3500 km.
It is therefore likely that a change of ¢ from the present
value, (3/4) X102, to fthe value determined heve,
(3/2) X102, would not change the forecast appreciably,
except for the ultra-long waves, which in fact are
better forecasted by the greater value of ¢, according to
Cressman.

5. THE BAROCLINIC CASE

The incorporation of a control of the ultra-long waves
in a baroclinic model is complicated by the fact that we
want the corrected model to keep essentially the same
properties it had for the shorter waves. A pronounced
difference between a barotropic and a baroclinic model 1s
that the baroclinic model contains a mechanism for in-
stability by which waves may grow in amplitude. Once
we have decided in which way we want to incorporate the
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control of the long waves we have therefore to investigate
whether the phase-speed and the instability criteria for the
modified model are left essentially unchanged, or if they
are changed, we have to investigate whether the change is
in a direction which is supported by observations or
experience.

One of the results in the first sections of this paper is
that the behavior of the ultra-long waves is sensitive to
even very small divergences. We may therefore expect
that if we introduce a mean divergence different from zero
in a baroclinic model we will be able to control the ultra-
long waves. The main problem is to relate the mean
divergence to the parameters which carry the history of
the flow. It means, for a two-parameter model of the
usual type, to a height and a thickness. In the following
simple two-parameter model we shall try to introduce such
a net divergence in the vertical direction by relating the
vertical mean divergence to the flow parameters in a way
similar to the one used in the barotropic case treated
earlier in this paper.

The prognostic equatlons we are gomg to use will be the
vorticity equation in the form:

of _ Quw
a"l’V'V(g"f‘f)——fo >p (5.1)
and the adiabatic equation
oY oY
O RRICH IR

where f, is a standard value of the Coriolis parameter.

We shall in the following denote the 200, 400, 600, 800,
and 1000-mb. surfaces with subscripts 0, 1, 2, 3, and 4.
Applying equation (5.1) to the 400 and 800-mb. surfaces
and approximating dw/0p by finite differences we obtamn
with P=40 cb.:

05“1

XV V)= (0o (53)

and

ars-l—Va v(¢+f) —f

(w4—w2) . (5.4)

We shall in the following apply the approximate
boundary condition w,=0, thereby disregarding mountain
effects in the model. The practice before has been to set
wo=0. This means that we assume that the vertical
velocity has a zero point somewhere between the two zero
points at the surface of the earth and at the top of the
atmosphere. Although it is true that such a zero point
exists in most cases the result is that putting this zero point
invariably at 200 mb. reduces the vertical mean divergence
in the layer between 200 and 1000 mb. to zero, and we can-
not any longer control the long waves. We shall therefore
not put w,=0, but try to work with the layer between 1000
mb. and 200 mb. as an “open” system.

With w,=0 it 1s now convenient to add and subtract the
equations (5.3) and (5.4). At the same time we shall



MaAy 1959

assume that for any quantity « we have

= (en+-at) (5.5)
and we shall further introduce the notation:
o/ =5 (a1 —ay)- (5.6)
Using this procedure we obtain;
B VW) HV T = (57)
o VTV Tt ) =Ra—dhar  58)

By applying the adiabatic equation at 600 mb. the
value for w, may now be obtained in the usual way:

Bo= 2 (tvrwy )~

W v w) (5.9)
with

q_%z constant. (5.10)
The value of wy/2P may be related to the parameters
. characterizing the flow in the following way. Let us
: apply the continuity equation at 400 and 800 mb. and
- obtain

; —w

V- Vi=—(duw/op),=—22_ P (5.11)
V- Va=—(Qu/0p)s=p (5.12)
Adding these two equations we obtain:
=%
v-Vi=5p (5.1‘3)
We have on the other hand:
—_— 5P/2

where V-V is the vertically averaged divergence in the
layer between 200 and 1000 mb. According to (5.13) and
(5.14) V-V, represents within the approximations of the
model the vertically averaged divergence. Due to the
relation (5.13) we are in the position to express wy/2P by
a procedure similar to the one used in the barotropic case.
.- In the incorporation of the mean divergence in the two-
parameter model we should have in mind that we are
first of all trying to control the behavior of the ultra-long
~ waves. In the first approximation we are probably there-
fore allowed fe express V - V- V in the same way as in the
. barotropic case i.e.,
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_Qfl%wo_ oV - Vz_.rb% (5.15)
with
i (de) A
()% (5.16)
With fo—10~* sec.”!, o,—3 MTS units, dA/dp_—O?f‘,

and (de/dp), computed from a formula corresponding to

(2.8) we arrive at a value of

r=2.22X107"2, (5.17)

The assumption (5.15) means that we assume the ultra-
long waves to have a small tilt vertically around level
2; i.e. 600 mb. It is realized that this assumption needs
further investigation. In a paper by Eliasen [10] it is
shown that the tilt of the long waves on the seasonal
mean charts is not insignificant in the lower part of the
troposphere. On the other hand, a similar Fourier
analysis of the long waves at the levels 800, 700, 500, 300,
and 200 mb. on a few individual days has in no case shown
tilts nearly as great as those found on the normal charts.
The assumption (5.15) may therefore in many cases be
considered as a good first approximation.

The expression (5.15) could be introduced directly in
(5.7) and (5.8). However, diagnostic computations of
the vertical profile of the vertical velocity described in
section 8, show that w,<w;. For simplicity we shall
therefore neglect the second term on the right side of (5.8)
in comparison with the first. This means only that we are
neglecting the mean divergence in the troposphere in com-
parison with the divergence at 400 or 800 mb., which
represent the upper and lower parts of the troposphere.

Granted that these approximations can be made we
arrive at the following modified forecast equations

b §-2 a‘p2

+V2 Vite+N)+V v =r 57 (5.18)

%—i+vz VeV -v(§2+f)=q(%¢t—+vz . w’)- (5.19)

The only change which in fact has been made is that the

%Y,

term rsE “has been added to the first prognostic equation,

when we compare with the equations for a model where the
mean divergence is zero,

It is the purpose of the following section to show that
this small modification will control the ultra-long waves
in the atmosphere and further to illustrate the changes
which we may expect in the short waves using (5.18) and
(5.19) as prognostic equations.

6. A PERTURBATION ANALYSIS OF THE
BAROCLINIC CASE

Although the final proof of the applicability of a set of
prognostic equations always is the successful forecasts -
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made from them it is of interest to make a simple analysis
of the model in order to test it as far as the mathematical
technique allows us to do it. The only test which can be
made by a relatively simple mathematical technique is a
linear perturbation investigation. The two-parameter
models where the mean divergence vanishes have been in-
vestigated in this way by, for instance, Eliassen [9],
Thompson [16], and Phillips [14]. It is therefore of con-
siderable interest to make a comparative study of the
model described here and the corresponding model with
vanishing mean divergence.

The two parameters that characterize the model are the
stream functions ¥, and y’. Let these |be ldescribed [by
the relations

Va(@,y,t) =—Ugy+ipe*e= (6.1)
and
V (2,y,t)=—U'y+§ =0 (6.2)

where U, and U’ are constants, ¥, and ¢’ are the ampli-
tudes, k=2=/L is the wave number, and ¢ is the phase-
speed (wave velocity).

Inserting (6.1) and (6.2) into (5.18) and (5.19) one finds
that ¥, and ¢’ are solutions to the prognostic equations
provided

/b
2+ (1+¢%

2+r*+q*

24-r*
U2"2<1+r*><1+q*>

2(1+r*) (6.3)

B*
For any quantity a the superscript * means

e | . 6.4)

Further

D=[(1+¢*) r* U2+(q —r*) 8*F

—4 (14r*)(¢g**—1)U". (6.5)

It should be mentioned that the corresponding formula .

for the usual two-parameter model with vanishing mean
divergence simply may be obtained by putting r*=J.
This simple relation makes a comparison between the two
models fairly easy. v

As we are here especially interested in the ultra-long
waves we shall first investigate what happens when

k—0 (L—«). Considering :the ‘three ‘terms in (6.3) we
find directly that
lim 5 oy V=gl \
i simae e [ 09
lim WQTIE Ut 7a?
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We find therefore that
U 2—[—3; if the plus sign is chosen
lim ¢= g (6.7)
k-0

=)

if the minus sign is chosen

The result (6.7) shows that both of these solutions re-
main finite for k—0. The interesting solution is the one
corresponding to the minus sign. With the numericsl
values chosen here we find for the latter solution

Cy=0=—PB/r=—7.2 m.sec? (6.8)

as compared to ¢;.o=— o for r=0 corresponding to &
vanishing mean divergence. We may therefore conclude
that the model controls the ultra-long waves in the sense
that the retrogression is greatly reduced.

Next, we shall investigate in which way the baroclinic
instability is being changed by the introduction of a mean
divergence. Unstable solutions are found in cases where

D<o (6.9)

From the expression (6.5) for D it is seen that only
stable solutions are possible, when

g <1

g= :%zélx 10-12

With

we find that ¢*<1, if £<38.1X10® km. Consequently all
waves with a wavelength smaller than 8100 km. are stable.
This result is the same as for the model with vanishing
mean divergence.

Unstable solutions are possible if L is greater than this
critical wavelength. The division between the unstable
and stable region may be found by equating D to zero. Tt
is seen immediately that a certain difference now appears
between the models with and without mean divergence,
In the case of no mean divergence the division between the
stable and unstable region is given by a single relation
between the models with and without mean divergence.
However, when we have a mean divergence the zonal wind
U, also enters into the relation. By inspection of (6.5) it
is seen that the greater the velocity U, is, the greater U’
has to be in order to create instability. This relation is
illustrated in figure 2, where the critical vertical wind,
shear (dU/dz). expressed now in the unit m. sec.” km.*
is plotted as a function of wavelength in units of thousands
of km. It is seen that the curve for U,=20 m. sec.™* lies
higher than the one corresponding to U/,=10 m. sec.™,
The curve corresponding to no zonal velocity, U;=0 m.
sec.”?, is also drawn as representing an extreme case. The
dashed curve in figure 2 represents (dU/dz) . as a function
of wavelength for the model with vanishing mean diver-
gence. This curve is obtained from (6.5) by putting
r=0.
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Considering first the ultra-long waves we find that they
are closer to an unstable situation in the model with mean
divergence. ~However, disregarding the case where
U,=0 as an extreme case, we find that vertical wind shears
as observed in the atmosphere would never make these
waves unstable. 'We may therefore conclude that we have
obtained a considerably reduced retrogression of ultra-
long waves without introducing any instability in this part
of the spectrum.

Turning our attention toward the smaller wavelength in
the spectrum we find that the introduction of a mean
divergence in the model changes the instability to some
extent. We find for instance with the value of the static
stability chosen here that the wavelength of maximum in-
stability is around 4000 km. in both models. However,
in the model without mean divergence a vertical shear of
only 1.6 m. sec.”* km.™* is necessary to produce instability.
The corresponding figures are about 3.1 and 5.8 m. sec.”
km.™ for U/, equal to 10 m. sec.”* and 20 m. sec.™, respec-
tively. Briefly, we may therefore conclude that the way
in which we have introduced the mean divergence into the
model tends to stabilize the shorter waves somewhat.

It is a general impression that a two-parameter model
without mean divergence will develop pressure systems too
much in cases when they actually are deepening. From
the result of the instability analysis made here it is seen
that a model with mean divergence will counteract this
tendency. Actual computations will of course have to
prove this tentative conclusion.

It has been pointed out by other investigators (Eady
(8], Charney [4]) that according to linear baroclinic
instability theory the westerlies should constantly be in
a state of instability. The result that the present model
seems to decrease the instability makes it interesting to
mvestigate whether this also is the case for this model.
Although our instability criterion is derived for flow
patterns without horizontal shear we shall nevertheless
try to compare the results with the mean state of the real
atmosphere. The wavelength of maximum instability
seems to be around 4000 km. We shall therefore investi-
gate the problem mentioned above by setting Z=4000 km.
and then computing the cr itical vertical \\m(l shear as a
function of latitude using values of 7" 23 1.e., £ at 600 mb.,
taken from a mean cross-section of the fltmosphere The
OI‘ItICdl wind sheqr may then be compared with the actual
Wmd shear in ‘the mean cross-section. For this purpose
the mean cross-section prepared by Hess [11] has been
‘ used_. :,The result of the computation is shown in figures
3a‘'and 8b for winter and summer, respectively. A marked
difference compared to earlier results is that the mean
atmosphere is stable at almost all latitudes. The only
exception worth mentioning seems to be north of 60° N.
in summer, when the mean atmosphere seems to be a little
unstable

Another measure of the degree of instability Whlch is
present In the model is the time it takes to double the

MONTHLY WEATHER REVIEW

177

24 — dY mosecs' km”
Adz

23 -

22| !

er—-

[Uz =20 m. sec."]

[U2 =10 m.sec."]

[U2 =0 m. sec."]

N W R e N W

R e lz_l;4 ks b dadEEs . 0-2km

¥ieure z-—Diagram giving the division between stable and un-
‘stable regions for different values of the zonal velotity, U
The dashed line is the corresponding curve for a model with
vanishing mean divergence.
length in thousands of km.,
in the unit m, sec.”™ km.,™.

The horizontal axis gives wave-
the vertical axis vertical wind shear

AU, g osec”! krﬁ."
dz
4
41
3
2
1
a
I N A T N
O3 7 & 50 40 30 20
Deg. Lat.

Frcure 3.—The dashed curves give the averaged vertical wind
shear in the layer between 800 and 400 mb. in the unit m. sec.”
km.™ as a function of latitude obtained from Hess’ [11] cross-
section. The solid curves give the critical wind shear cor-
responding to the zonal wind as taken from the cross-section at
600 mb. (a) Winter, (b) Summer,
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Fieure 4.—Diagram showing the vertical wind shear necessary
to double the amplitude of a wave in 24 hours as a function of
wavelength for different values of the zonal velocity U.. The
dashed curve gives the same for the model with vanishing mean
divergence.

amplitude of a certain perturbation. This time will of
course also depend on the wind ‘speed U, in the model
with mean divergence. Figure 4 contains curves giving
the vertical wind shear necessary to double the amplitude
in 24 hours as a function of wavelength for different
values of U/, in the model with mean divergence. The
curve corresponding to the same condition for the model
with vanishing mean divergence is plotted for compari-
son. This figure illustrates even more clearly than figure
2, the decreased instability caused by the mean divergence.
As an example taken from figure 4 it may be mentioned
that for L=4000 km. and U/,=20 m. sec.” a vertical wind
shear almost twice as large as in the model without mean
divergence is needed to double the amplitude in one day.

Figures 5-8 give the phase speed ¢ as a function of
wavelength in the two models for different combinations
of U, and U: The curves in figures 5a-8a were computed
from (6.3) with »=0, corresponding to no mean diver-
gence, and in the figures 5b-8b with »>20. The main fea-
ture in these figures is of course the great difference be-
tween the curves ¢~ (corresponding to the negative sign
in front of the square root), assuring us that no excessive
retrogression takes place in the modified model. Figure
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FI6URE §.—(a) Phase-velocity as function of wavelength for the
model without mean divergence, (b) the corresponding figure for
a model with mean divergence. The dashed line in (a) is the
Rossby speed, while the dashed curve in (b) corresponds to
U’=0 (no vertical wind shear). Parameters: U>,=20 m. sec. 7,
dU/dz=4 m. sec.” km.™,

5 illustrates a case where the modified model is stable for
all wavelengths, while the model without mean divergence
actually is unstable in a band from about 3100 km. to
about 7000 km. Note also in figure 6 that the modified
model is unstable in a shorter interval than the non-
modified. This is, however, not invariably so. When the
zonal speed U, is small and dU/dz is large the modified
model will be unstable in a broader band of wavelength.
This fact is illustrated in figures 7a and Th, corresponding
to ;=10 m. sec.”* and dU/dz=8 m. sec.”* kim."*. Figures
8a and 8b finally illustrate a case where U/,=10 m. sec.
and dU/dz=4 m. sec.” km.*. In these diagrams the band
of unstable waves is about the same.

Figures 5a-8a contain for comparison the speed of
waves in a non-divergent, barotropic atmosphere, the
Rossby speed, while figures 5b-8b contain the wave speed
corresponding to dU/dz=0. TFor large values of the
wavelength the speed for dU/dz 0 and dU/dz=0 are
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FiGURE 6.—Same as figure 5, but with parameters: U.=20 m. sec.™,
dU/dz=8 m. sec.”' km.™.

about the same, while the speed of the waves in a baro-
clinic atmosphere is somewhat larger than in an atmos-
phere with no vertical wind shear.

7. ON THE VERTICAL VARIATION OF STATIC
STABILITY

The evaluation of divergence in sections 2 and 5 depends
to a large extent on the vertical variation of static stabil-
ity. We have in the earlier sections used a variation
described by (2.8), where the static stability varies
inversely to the square of pressure.

The tropospheric part of a mean atmosphere is usually
characterized by a certain lapse-rate, y=—9°7/92. The
most straightforward way to compute the static stability
e=—09In6/?p as it appears in models for numerical inte-
gration would therefore be to assume a certain value for vy
and then compute the variation of ¢. It is, however, of
great convenience in many problems to have o as a rather
simple function of pressure. In this section we shall show
that a formula of the form (2.8) will describe the vertical
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variation of temperature in the atmosphere to a good
approximation. Let us write (2.8) in the form:

=2 (7.1)

where ¢ is a constant determined in such a way that o at
some pressure level, for instance 600 mb., is equal to a
standard value determined from a mean atmosphere. Let
us next try to find 7=7'(p) corresponding to (7.1) by
writing

g——Qa

= 7.2
op p @2)
we find that the temperature has to satisfy the following
differential equation of the Euler type

dT R

@
The solution to (7.3) is
R
T= T(p)=—1%'§c,,+0p°". (7.4)
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The arbitrary constant (' can be determined by fixing
the temperature at a certain pressure, say, 600 mb. We
obtain then

R
T=1(p) =g, e H(Tom g er ) (2 )

The temperature distribution given by (7.5) is plotted
in figure 9 as the full curve. The dashed curve gives the
temperature distribution in the standard atmosphere,
while the dotted curve is taken from Defant and Taba [7]
corresponding to the air mass between the polar-front jet
and the subtropical jet. It is seen that the three curves
follow each other quite closely, and we may therefore con-
clude that the assumption (2.8) represents mean conditions
in the troposphere in the westerlies quite well.

For use in the next section we shall need the tempera-
ture distribution in the stratosphere. For simplicity we
shall assume that the stratosphere is isothermal with a
temperature corresponding to the one obtained from (7.5)
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Frevre 9—Temperature as a function of pressure corresponding to
a variation of static stability inversely proportional to the
square of pressure (solid curve). The dashed curve gives tem-
perature as function of pressure in the standard atmosphere,
while the dotted curve is the temperature as function of pres-
sure in the air mass between the polar jet and the subtropical
jet as given by Defant and Taba [7].
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Ficure 10.—Static stability as a function of pressure in tropo-
sphere and stratosphere, when the stability is inversely propor-
tional to the square of pressure.

for p=p,=200 mb. The stability will then vary in the

following way:

RTs1 b
¢ ppY
The stability profile as determined from (7.1) and (7.6)
is shown in figure 10. It is seen that the static stability
varies greatly in troposphere and stratosphere and further
that the tropopause is characterized by a jump in stability.

(7.6)

Os—



MaY 1959

8. SOME EXAMPLES OF VERTICAL PROFILES OF
THE VERTICAL VELOCITY

In section 5 we neglected the vertical velocity at 200 mb.
in comparison with. that at 600 mb. As the 200-mb. sur-
face usually in the westerlies is in the stratosphere one
can from many considerations justify this neglect. In
order actually to measure the ratio between the two
quantities certain diagnostic computations of the vertical
profile of o have been performed. These computations
were made with a model slightly different from the one
described in this paper, because special attention was paid
to the influence of the stratosphere on the vertical profile
of o. The w-equation was obtained from the vorticity and
adiabatic equations in the forms

o¢ . of ow
5TV V(?“I‘f)—f-wa)—(s“-f—f)a—p (8.1)

and

%(%)4-\/ tV(%)-I-%w:O (8.2)

by the usual procedure. In this way we arrive at an
equation for the vertical velocity in the form

VY

V+1) Lottt OV o P,y p)  (8.3)
ap2 p ap ) b4 N
with
: 9% wv-vp—vr(v-v ¥
Fz, y,p)—ap (V-Vq)—V (V % ap> (8.4)
In the troposphere we assume that
V=Vot A@V', o= (8.5)
and in the stratosphere that
V= B(p)V,, (8.6)

o= —
P’

The functions A(p) and B(p) were in fact determined
in such a way that they are consistent with the assumption
that Vo=0 (see Berkofsky [1]) and further such that the
wind is continuous at p=p,=200 mb. (see fig. 11). When
the approximations (8.5) and (8.6) are introduced in (8.3)
we arrive at two equations, one for the troposphere and
one for the stratosphere.

As we are here interested in the vertical variation of o,
we shall replace v% by —fBw, where g is an inverse
measure of horizontal scale. By doing this we restrict
ourselves to a consideration of essentially one scale. (8 was
here chosen as corresponding to the wavelength of maxi-
mum instability (LZ=4000 km.). With this restriction
the two equations obtained from (8.3) reduce to ordinary
differential equations in o, which then should be solved
using appropriate boundary conditions.

MONTHLY WEATHER REVIEW

181

100

200

600

-700

Faoo

- 900

7 T ¥ T Iogg R v T
-.0 -0.8 -06 04 -02 00 02 04 06 08

T ) >

O 12 14 A(p)

Ficure 11.—The functions A(p) and B(p) characterizing the
variation of the horizontal wind with pressure in the model
used for diagnostic computations of vertical velocity. The
dashed curve in the lower figure corresponds to the case where
A (p) is a linear function of pressure.

We shall use o=0 for p=0 and p=p,=1000 mb.
Furthermore, we need an internal boundary condition for
p=p,=200 mb., where the solution to the stratospheric
equation should be matched together with the solution to
the tropospheric equation. The level p=p,=200 mb.
represents in the present considerations the tropopause as
well as the level of maximum wind. These two levels
need not in all cases be the same in reality, but synoptic
investigations (Defant and Taba [7]) show that they are
close to each other, usually with the level of maximum
wind a little lower than the tropopause. We way,
therefore, at the level p=p, apply a boundary condition
natural for a discontinuity surface for stability. Such
boundary conditions have been treated by Lowell [12].
The vertical velocity should be continuous at the tropo-
pause and further should (2w/0p)s~w/dp)r which
means that the first derivative in the p—direction should
be continuous. These two conditions have therefore been
applied at p=p,.

The solution to the two equations obtained from (8.3),
with the boundary conditions mentioned above, is quite
laborious. For the general case it has not been possible
to find analytical solutions. A numerical integration of
the two equations has therefore been performed. The
method used in the numerical solutions has been the
Runge-Kutta method, which is most convenient in cases
of internal boundary conditions. Examples of solutions
are presented in figures 12 and 13. In these cases the
stream functions at 600 mb. and for the thermal flow
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Ficure 12.—The vertical velocity as a function of pressure in dif-
ferent points of a baroclinic wave, where the thermal stream
function is lagging 1% of a wavelength behind the stream func-
tion at 600 mb. (see upper part of the figure). The dashed curve
in the upper part of the figure gives the vertical velocity through
the baroclinic wave at 600 mb.
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Ficure 13.—Same as figure 12, but with phase-difference of 14 of
a wavelength between the thermal stream function and the
stream function at 600 mb.

between 800 and 400 mb. were specified as simple sinus-
oidal waves having a certain phase difference. Figure
12 corresponds to the case where the thermal field is lag-
ging 14 of the wavelength behind the field at 600 mb.,
while figure 13 has a phase difference of 14 of a wave-
length. All constants were computed for eight different
points. The computation gave then the eight vertical
profiles represented in the figures, which in the upper part
contain a schematic picture of the temperature and pres-
sure wave and also the horizontal profile through the
baroclinic wave of the vertical velocity at 600 mb. On
each of the profiles is given the level of maximum vertical
velocity and the levels where « has a zero point different
from those at the boundaries. It should further be men-
tioned that each profile is normalized in such a way that
the maximum value is unity.
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Of importance for the discussion in the preceding sec-
tions are the following features:

(a) A zero point for the vertical velocity appears some-
what higher than the level of maximum horizontal wind.
The pressures of the zero points vary systematically
through the wave, and we may state that the values of
» obtained above the zero point are extremely small.

(b) o, at 200 mb. 1s not exactly zero, but it is true that
wo<Kawp, Where v, is at 600 mb. This characteristic justifies
the approximation made in section 5.

(¢) The non-divergent level varies systematically
through the baroclinic wave with the result that this level
does not coincide with a pressure level.

(d) Itisa limitation in the present calculation that the
tropopause level has been assumed at a constant pressure
(200 mb.). In reality we may therefore expect a larger
variation of the level of nondivergence.

9. SUMMARY AND CONCLUSIONS

Sections 2— contain a derivation and discussion of the
prognostic equation for the 500-mb. flow where attention
1s focused on the term which controls the ultra-long waves.
It is shown that the numerical value of the coefficient is
related to the vertical variation of the horizontal wind and
the corresponding variation of the static stability. The
numerical value determined in this way agrees well with
the one obtained empirically by Cressman [6] and Bolin
[2].

Section 5 generalizes the results obtained in sections
24 to a simple two-parameter model. It is shown that
the simplest way to control the ultra-long waves in a baro-
clinic model is to introduce a mean divergence in the
troposphere. The mean divergence may in the first ap-
proximation be estimated barotropically corresponding to
the well-known fact that the mean motion in the atmos-
phere is almost barotropic.

The influence of an existing mean divergence in the
atmospheric layer under consideration on the baroclinic
mstability 1s investigated in section 6. The main result
is that the mean divergence stabilizes the shorter waves
to some extent, beside the effect of decreasing the retro-
gression of the ultra-long waves considerably. An appli-
cation of the stability criteria derived in this section to
a mean cross-section for the atmosphere shows that the
mean atmosphere is baroclinically stable at almost all
latitudes.

A justification of certain approximate relations used in
the earlier sections is given in sections 7 and 8 of which
the former is concerned with the vertical variation of the
static stability, while the latter gives certain diagnostic
results of computations of vertical profiles of the vertical
velocity.

Any model designed for numerical prediction of tropo-
spheric flow pattern must contain an effect which at least
expresses the quasi-stationary behavior of the ultra-long
waves. According to results obtained by Burger [3] we
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cannot expect to express more than this as long as we use
the vorticity equation as the prognostic equation. One
possible way of controlling the ultra-long waves is demon-
strated in this paper, where we have made use of the
observed barotropic character of these waves. Certain
modifications of the behavior of shorter waves is also
obtained by this procedure. It is quite likely that a more
sophisticated introduction of the mean divergence, which
seems to be the important quantity, into a tropospheric
model may change the behavior of the Rosshy type of
waves still more.
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